
Distributed Gerrit Code Review: A comparison   I   www.cirata.com 1   I   © 2024 Cirata Inc.   I   All rights reserved

Distributed Gerrit 
Code Review:
A comparison
Technical white paper



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 2   I   © 2024 Cirata Inc.   I   All rights reserved

Distributed Gerrit Code Review:
A comparison

Introduction 
Gerrit Code Review, an open-source tool originally 
developed by Google, streamlines the code review process 
for software teams using Git. It keeps a detailed record of 
all code reviews directly within your project’s history. This 
includes valuable insights like comments from your team, 
automated system checks, and even the evolution of code 
changes - including those from abandoned reviews. This 
level of transparency not only helps you understand the 
‘why’ behind your software’s development, but also 
ensures compliance with government regulations that 
require traceable change control.

Gerrit multiple primary 
deployments 
Traditionally, Gerrit was designed to operate on a 
single server. While Google has adapted Gerrit to work 
seamlessly across multiple locations using their own 
internal technologies, this solution isn’t available to the 
wider community.

Recognizing the need for distributed capabilities, the Gerrit 
open-source community has been actively 
seeking solutions.

Cirata stepped in to address this challenge, developing 
Gerrit MultiSite. By leveraging Git MultiSite and our 
patented DConE technology, Gerrit MultiSite empowers 
teams to collaborate effortlessly across multiple locations. 
It ensures smooth, synchronized replication of everything 
from Git repositories and Gerrit events to other critical data, 
no matter where your team members are located.

The comparison
The open-source community has been actively working on 
the “multi-site” plugin as a way to enable distributed Gerrit 
capabilities. However, this plugin is only one piece of the 
puzzle. In reality, you need at least four different plugins 
to achieve a fully functional, multi-site Gerrit setup with 
multiple primary instances.

We’ve provided a detailed overview of the architecture. 
We’ll be referencing this diagram and the implementation 
details throughout this whitepaper as we compare each 
component to Cirata’s Gerrit MultiSite solution.

The 4 critical optional components are:

1. Multi-site plugin

2. Broker plugin

3. Global Ref-DB plugin

4. Replication plugin (either push or pull)

If your Gerrit deployment wants to have a “single service 
presence” then 2 additional optional plugins and 1 
additional service will be necessary:

5. Health check plugin

6. HA Proxy

7. Web-session broker plugin



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 3   I   © 2024 Cirata Inc.   I   All rights reserved

“multi-site” component vs. codified 
changes to Gerrit
Back in the early days of Gerrit version 2, we explored 
using plugins to achieve the level of replication needed for 
a truly enterprise-ready solution. However, the existing 
plugin capabilities fell short. To meet the demands of our 
customers, we decided to create our own customized 
version of Gerrit, focusing on essential enhancements.

We keep a close eye on Gerrit’s ongoing development, 
always looking for opportunities to integrate our solution 
into a plugin as opposed to a full rebuild of Gerrit. While the 
gap is narrowing, our implementation still requires certain 
features not yet available in the standard Gerrit distribution. 
As such, we continue to maintain our own optimized version 
to deliver the best possible experience.

JGit modifications
Content delivery policy
Cirata enhances Gerrit by modifying JGit to intercept 
repository updates. We ensure these changes are instantly 
replicated and kept in sync across all your locations using 
Git MultiSite (our improvements to JGit are openly shared 
on GitHub after each release).

By intercepting repository updates, we deliver:

1. Data for the update can be packaged up for parallel 
delivery to other systems.

2. Data for the update can be required to be delivered to 
at least N other systems (tunable, defaults to 1).

The content delivery policy in Step 2 is crucial for 
preventing disruptions in your distributed Gerrit 
environment. In a distributed ecosystem, it’s possible 
for the system to initiate an update even if the required 
data resides only on a single server. If that server becomes 
unavailable before the other sites receive the data, the 
entire update process across all locations comes to a 
standstill. The Content Delivery Policy safeguards against 
this by ensuring data is properly distributed before any 
updates proceed, minimizing the risk of single points of 
failure and keeping your Gerrit system resilient.

Once the Content Delivery Policy is met, ensuring data is 
available across your system, updates are then proposed 
and voted on using a consensus mechanism (Paxos).
Each approved update is then scheduled for delivery to 

the appropriate replica family. This schedule is simply a 
numbered sequence, the “Global Sequence Number” 
(or GSN), unique to each replica family. Each replica family 
has its own set of members participating in the voting 
process and maintaining its own independent sequence.

Idempotent update operations
When recovering from an application failure, it’s sometimes 
necessary to re-run an update operation because it’s not 
always clear if it was completed successfully the first time. 
This means that an update, identified by its GSN, might 
need to be executed multiple times, always in order and 
without any other operations in between.

Let’s illustrate this with a simple example: imagine you want 
to update a value stored on a server from 15 to 20.

• The non-idempotent way: The update instruction is to 
“add 5 to the value.” The first time, you get the correct 
result of 20. But if you run it again, the value becomes 
25, then 30, and so on, leading to incorrect data.

• The idempotent way: The update instruction should 
be to “set value from 15 to 20”.  No matter how many 
times you run it, it will only update from the old value 
15 to the new value 20 once.  This ensures that you do 
not change an incorrect value of 13 to a new value 20 
as part of this operation.

When dealing with repository operations in a distributed 
system like Gerrit, it’s critical that these update operations 
are designed to be idempotent, just like in the example. This 
ensures data integrity and consistency, even in the face of 
unexpected interruptions.

To ensure smooth recovery from any system interruptions, 
we made sure that all JGit repository update operations 
could be safely repeated if necessary. Most of these 
operations were already idempotent. However, we identified 
that “atomic batch updates” needed some adjustments to 
achieve the same level of reliability. We implemented the 
necessary changes to ensure these updates could also be 
replayed without causing any issues.



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 4   I   © 2024 Cirata Inc.   I   All rights reserved

Broker libModule and plugins
The open-source Gerrit multi-site solution uses a specific 
plugin, called the broker libModule along with associated 
events plugins (see below) to deliver Gerrit updates like 
index events, cache events, and stream events across 
different sites. This plugin operates independently from the 
mechanism used to synchronize repository changes (like Git 
push replication).

This separation can lead to many race conditions where 
updates might arrive out of order. For instance, information 
about changes to the Gerrit index might reach a site before 
the actual repository data it references. To address this, 
each plugin implementation needs to include complex 
mechanisms to retry events and ensure they’re processed 
in the correct sequence. This often involves using a queue 
where updates are insert-sorted and validated before 
being applied.

Cirata streamlines the process by using the same efficient 
mechanism for both repository updates and Gerrit events. 
This ensures that any changes to the repository itself are 
always delivered before any related events, eliminating 
the risk of timing conflicts. This simplified approach results 
in a much more straightforward and reliable 
queue processing system.

We pay special attention to events that involve multiple 
repositories, although these are far less common than 
events within a single repository. To handle these specific 
cases, we’ve built a backoff/validate/execute mechanism 
that carefully checks and processes these events, 
ensuring they’re executed correctly even if they arrive 
slightly out of order.

As Gerrit continues to evolve, we’re seeing fewer and 
fewer of these cross-repository events. We anticipate 
that soon they’ll be eliminated entirely, allowing us to 

further simplify our solution.

Currently, there are 5 open source Gerrit broker plugins that 
are offered to fulfill this service requirement:

• events-aws-kinesis

• events-eiffel

• events-gcloud-pubsub

• events-kafka

• events-rabbitmq (not built by default)

Gerrit Broker plugin class limitations
The five plugins operate on a “publish/subscribe” (or “pub/
sub”) model. This model introduces a challenge because 
each plugin establishes its own network connection, 
separate from the Gerrit servers themselves. Most of these 
plugins necessitate a centralized service. Although this 
service can be made highly available (for instance, through 
a Kafka cluster), its central nature creates a vulnerability: 
reliance on network connectivity. If the data center hosting 
the centralized service becomes isolated from your remote 
sites’ networks, the service becomes inaccessible at those 
locations, halting updates until connectivity is restored.

Cirata’s Gerrit MultiSite leverages the full capabilities of our 
Paxos-enabled Git MultiSite product, deployed alongside 
each Gerrit instance. This eliminates the need for additional 
plugins and, crucially, avoids introducing any extra network 
dependencies. Replication across subsets of servers 
(known as “replication groups” or “RGs”) remains consistent 
as long as a voting majority is maintained. Should a subset 
of members lose their voting majority due to a network 
outage, they will temporarily transition to a read-only state 
until connectivity is restored. Any unavailable members will 
automatically synchronize their data upon reconnection. 



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 5   I   © 2024 Cirata Inc.   I   All rights reserved

Comparison of 3 site server requirements
Let’s imagine a Gerrit deployment across three sites globally. Cirata’s Gerrit MultiSite solution necessitates just one server 
at each site. As long as any two of these sites maintain network connectivity, they remain fully operational. If the third site 
is also connected, it too functions seamlessly. However, if the third site experiences a network outage, it will temporarily 
switch to a read-only mode until connectivity is restored.

The following diagram shows the resources necessary for the Cirata MultiSite solution (left) versus the open source “multi-
site” solution (right) for a replicated three Gerrit server deployment:

Now, let’s examine the same three-site setup using only open-source Gerrit plugins. While you’ll still need the same three 
Gerrit servers, one at each site, this approach also requires additional infrastructure: a Kafka cluster and a Zookeeper 
cluster, both set up for redundancy. (Refer to the diagram above for a visual representation). Kafka and Zookeeper are 
depicted as “Kafka Cluster” and “Zookeeper Cluster” because they can’t be distributed across a wide area network; they 
need to reside within a data center. Although they could technically be located at any of the original three sites, it’s crucial 
to remember that any Gerrit server losing connection to either of these services will become partially or fully inoperable. 
This setup inherently introduces more potential points of failure compared to the Cirata solution.

Operational Details
Returning to the limitations of the Gerrit Broker Plugins, there’s a noticeable lack of guidance on how to effectively deploy 
and manage them in a real-world, distributed environment. Critical operational details, particularly around handling 
network outages, resource constraints, server failures, server availability, scaling the system, or adding new servers, are 
scarce. With five different plugin types involved, acquiring the expertise to troubleshoot and maintain this setup can be a 
complex and costly endeavor.

Opting for cloud provider services like AWS or Google Cloud can simplify the management overhead associated with 
a self-hosted solution. However, it’s important to consider the potential trade-off of vendor lock-in, where you become 
reliant on a specific cloud vendor’s infrastructure and services.

Site B
Gerrit & 

Git MultiSite

Site C
Gerrit & 

Git MultiSite

Site A
Gerrit & 

Git MultiSite



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 6   I   © 2024 Cirata Inc.   I   All rights reserved

Global RefDB plugin
The Global RefDB plugin is a critical component of the 
open-source multi-site solution for managing repository 
updates. It prevents split-brain scenarios, where conflicting 
changes occur, by ensuring that only one of the multiple 
primary servers can update a Git reference from the 
“current” hash value to a “new” hash value via an “atomic 
test and set” operation.

If a primary server attempts an update but is unsuccessful:

• The client attempting the update will receive a 
notification of the failure

• The server needs to fetch the latest data from the 
primary server that successfully completed the update

• The client will need to refresh their local copy of the 
repository before attempting the update again.

A key challenge with this open-source approach is that 
a single point of failure exists at a critical point during 
repository updates. If the Global RefDB is updated, but 
the server holding the corresponding data becomes 
inaccessible (due to a crash, network issue, etc.), other 
primary servers cannot obtain the necessary Git 
repository data to continue their operations. This creates 
a vulnerability that Cirata’s Content Delivery Policy 
specifically addresses.

We’ve encountered situations where this kind of scenario 
severely disrupts workflows. Cirata’s solution proactively 
prevents this by ensuring data is replicated across multiple 
servers before any updates are scheduled. This eliminates 
the risk of a single server outage halting your entire system.

If such a failure were to happen without this safeguard, 
restoring the system to a consistent state becomes a 
complex operational task, particularly if the server remains 
permanently unavailable. It would necessitate checking all 
Global RefDB entries and potentially resetting them to a 
previous state, which can be time-consuming and error-
prone. In some cases it may even result in data loss in the 
case of an irrecoverable server. 

Another potential issue arises if the Global RefDB table is 
updated, but for some reason, the corresponding change 
isn’t applied to the actual repository. This could happen 
if the file system becomes read-only due to a hardware 
problem, or if the network connection to the RefDB service 
is lost, preventing the plugin from receiving confirmation of 
the update. Without making the RefDB update idempotent 
(i.e., ensuring it can be safely repeated without adverse 

effects), the only way to resolve this mismatch is to revert 
the RefDB back to its previous state. (Note: As of the time 
this was written, the doCompareAndPut() operation in the 
open-source plugin isn’t coded to be idempotent.)

Resolving such inconsistencies between the repository’s 
own RefDB and the Global RefDB table would necessitate 
specialized administrative tools, which we haven’t been able 
to find any reference to online.

Global RefDB plugin class limitations
Similar to the Broker Plugins, this entire category of plugins 
faces the same networking challenges we discussed earlier. 
Each plugin necessitates setting up, maintaining, and 
potentially paying for a separate service (e.g., on platforms 
like AWS or Google Cloud). Once again, comprehensive 
operational documentation for these plugins is scarce, if not 
entirely absent. (Refer to the “Operational Details” section 
above for more information on this challenge).

Specific plugin 
implementation limitations
Given the critical nature of the Global RefDB Plugin 
we will look at each in turn to discuss, briefly, some of 
their limitations. 

RefDB Plugin: aws-dynomodb-refdb
Using AWS DynamoDB as the underlying database for 
this plugin might be problematic due to its “eventual 
consistency” model. While this term suggests a slight delay 
in data updates, DynamoDB’s behavior can lead to data 
being overwritten in order to achieve consistency across its 
distributed system. In the context of the RefDB, overwriting 
a key-value pair could have severe consequences, unlike in 
applications like shopping carts where an incorrect update 
might just result in an incomplete purchase.

It’s crucial to avoid configuring a multi-region DynamoDB 
Global Table when using this plugin. Doing so could lead to 
data loss, which, in this context, translates to repositories 
becoming inconsistent or “split-brain” – a highly undesirable 
situation where different servers have conflicting versions 
of the same repository.

However, the limitation of not being able to utilize 
DynamoDB Global Tables means that you’re restricted to 
a single region for your database. This can pose challenges 
in a global deployment, potentially leading to network 
connectivity issues and increased latency for users located 
far from the database region.



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 7   I   © 2024 Cirata Inc.   I   All rights reserved

RefDB plugin: spanner-refdb
This plugin isn’t included in the standard Gerrit distribution, 
so you’ll need to compile it yourself. While the Google 
Spanner implementation might offer comparable 
performance to Cirata’s Paxos solution, it comes with 
certain considerations. You’ll either need to host your Gerrit 
servers on Google Cloud to ensure optimal connectivity, or 
accept the potential for network-related issues if your Gerrit 
servers are located elsewhere. Additionally, keep in mind 
that using Spanner involves utilizing Google Cloud services 
and incurring associated costs.

RefDB plugin: zookeeper-refdb
The Zookeeper implementation is not hardened for 
WAN networking issues. That means it will need to be a 
centralized service with all of the networking connectivity 
issues already discussed above.

Repository updates
In open-source Gerrit, keeping repositories synchronized 
between primary sites is handled through either “pull” 
or “push” plugins. Setting up this synchronization can 
be intricate, not just because of the many configuration 
options for timeouts, retries, and other settings. You also 
need to carefully choose which repositories and even 
specific branches and tags (called “refs”) within those 
repositories get replicated. This level of control is necessary 
to accommodate a wide range of complex scenarios, but it 
adds to the overall setup complexity.

Selective replication
Cirata Git MultiSite guarantees that every repository under 
its management has all its branches and tags replicated 
across all locations. This ensures each replica is an exact 
replica, eliminating any inconsistencies. There’s no need 
to configure any special rules to replicate important data 
like change refs or NoteDB information. Additionally, the 
concept of Replication Groups (RGs) makes it simple to set 
up selective replication, where only specific repositories 
are synchronized between certain locations. Symmetric 
replication, where all sites have identical data, is even easier 
to configure as it involves just a single Replication Group.

Plugin: replication (push replication)
The replication plugin was the first implemented. 
Performance issues triggered the development of the pull 
replication plugin.

Plugin: pull replication
The pull-replication plugin was implemented to speed up 
replication and from reports it has accomplished 
this objective.

The current recommended approach for achieving multiple 
primary replications in open-source Gerrit involves using 
the pull-replication plugin. This plugin is triggered under one 
of three specific conditions:

1. When notified by another Gerrit server that the 
repository has been updated (an HTTP POST)

2. Whenever a primary determines that it is out-of-
date with respect to a ref via a failed Global RefDB 
attempted update

3. When Gerrit is started (configurable) or when the plugin 
is reloaded (configurable)

For the first condition (#1) to work, each primary server 
needs to be explicitly configured with a list of its “neighbor” 
servers that should be notified whenever there’s a 
repository update. This server-by-server configuration can 
be time-consuming and prone to errors. Mistakes in this 
setup can lead to disruptions, requiring manual intervention 
by administrators to get things back on track for your users.

Currently, achieving robust and reliable replication requires 
configuring up to three dozen settings. These settings can 
be quite intricate, including specifying credentials (like SSH 
or HTTP) for each remote server. Since wide area network 
(WAN) traffic behaves differently than local area network 
(LAN) traffic, some configurations, such as timeouts, might 
need to be fine-tuned through trial and error. As mentioned 
earlier, readily available operational guidance for these 
settings is limited.

Let’s look at a couple of examples:
gerrit.replicateOnStartup

Although typically false, enabling this setting can impact 
scalability. The system’s performance may be affected 
by the combination of the number of repositories you’re 
replicating and the number of other primary servers 
involved in the process.



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 8   I   © 2024 Cirata Inc.   I   All rights reserved

replication.lockErrorMaxRetries

According to the documentation, if several primary servers 
simultaneously attempt to pull an update from this primary 
server, locking mechanisms might prevent one or more 
of them from succeeding. This can create a scalability 
bottleneck as the number of primary servers increases, 
potentially requiring adjustments to retry settings to ensure 
updates are eventually successful.

Cirata’s Gerrit MultiSite, as explained earlier, leverages Git 
MultiSite to immediately replicate every repository update 
to all family replicas. Repositories that are not modified 
generate zero replication overhead or network traffic, 
even during system startup. Our servers establish secure 
connections with each other and utilize a specialized set of 
protocols for efficient replication management.

Importantly, no manual configuration is needed for 
replication. When you add new repositories, they’re typically 
assigned to the appropriate replication group automatically 
based on their names. This significantly streamlines the 
process of selective replication, where you only want certain 
repositories synchronized between specific locations.

Additional services
As we mentioned earlier, achieving a “single service 
presence” requires configuring two additional plugins 
and one more service. This is a significant advantage for 
companies offering Gerrit as a service. It allows them to 
provide a single web address (FQDN) to their users globally. 
The system then intelligently directs each user to the Gerrit 
instance closest to them, ensuring optimal performance 
and responsiveness regardless of their location.

Health check plugin
The health check plugin is essential to the single service 
presence since the HA Proxy, GSLB, AWS Route 53 or other 
global load balancing service must know whether or not the 
Gerrit service is “up” at a site before directing the client to 
that site.

HA Proxy
Although the open-source Gerrit architecture recommends 
HAProxy, it’s worth noting that other options exist for global 
load balancing. You could utilize an on-premises GSLB 
(Global Server Load Balancing) solution, AWS Route 53, 
or similar services. However, it’s crucial to configure these 
services carefully to ensure that a user is consistently 
directed to the same Gerrit server, unless that server 
becomes unavailable.

The standard “round-robin” configuration, which distributes 
requests evenly across servers, isn’t suitable for distributed 
Gerrit setups. In such environments, some primary servers 
might be slightly behind others in terms of data updates. A 
pure round-robin approach could lead to users receiving 
inconsistent or outdated information. This applies equally to 
both Cirata Gerrit MultiSite and the open-source 
Gerrit solution.

Web-session broker plugin
The web-session broker plugin replicates web session 
tokens to allow already authenticated web browser client 
sessions to be honored at different primary sites. If a set of 
primary servers are located within a small region from a set 
of clients (low latency) and are automatically selected by 
an “HA Proxy”-like service then this type of service makes 
some sense.

However, in a globally distributed ‘multi-primary’ setup, 
switching users between servers located in different 
parts of the world can lead to noticeable delays and a 
less seamless experience. In such cases, requiring re-
authentication might be a better indicator of a potential 
issue rather than a strict necessity.

Currently, Cirata Gerrit MultiSite doesn’t replicate web-
session tokens. We’re actively gathering feedback from our 
customers to determine if this feature would be beneficial in 
future versions of our solution.

Cirata Plugin Forks
Git LFS Plugin
The open-source Git LFS plugin enables the location for Git 
LFS objects to be either Amazon S3 or “local to the server”. 
And the plugin is not “multiple primary hot”. That means 
that you either need to pay Amazon to use their AWS S3 
storage or only use a single server (or a set of local servers 
using NFS to mount the LFS storage area).

Cirata has forked the Gerrit Git LFS plugin in order to 
enable full replication of the Git LFS data for the “local 
to the server” case. The LFS data only goes to the same 
sites as the repository that uses that data. While this will 
slightly delay a push that requires uploading of Git LFS data 
based on the Content Delivery Policy, it means that any 
subsequent checkouts of a replicated repository worldwide 
will be able to fetch the LFS data from the “local” server - 
a massive win for globally distributed teams and also for 
DevOps automation.



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 9   I   © 2024 Cirata Inc.   I   All rights reserved

Delete Project Plugin
Cirata has forked the Gerrit delete-project plugin in order 
to require archiving of repositories before they are deleted. 
This enables a mistaken deletion to be easily recovered 
including every last change before the deletion occurred. 
The process of archiving is coordinated by Git MultiSite.

Git MultiSite Administration
While the Cirata Git MultiSite co-product provides the 
replication services for Gerrit MultiSite, it also provides 
additional site and global administration benefits via the 
Git MultiSite UI. There is no equivalent set of features 
in the open-source Gerrit multi-site software.

• See the replication status of any server via 
a dashboard.

• See the replication status of specific 
replication groups.

• See the replication status of a repository.

• Request a “consistency check” for a repository.

• See all the repositories that are replicated to that 
server (or a subset via filtering).

• Configure events to send notifications 
to administrators.

• REST API available for automation.

• Administrator’s user guide is available.

• Site addition and removal operations 
are documented.

• Repair operations are documented.

Repository consistency checking
In the list above we mention the “consistency check” 
operation. This operation gathers sufficient information 
about each replica in the replica family and compares that 
information. The resulting summary will either prove that 
the replicas are all consistent - or not. If not, the repository 
family will go “read-only” in order to enable a Git MultiSite 
administrator to repair the divergence via the procedure 
documented in the Administrative User Guide. Divergence 
is not due to split-brain - which cannot happen due to the 
Cirata architecture - but normally due to some negative 
hardware event. Note: The consistency check operation is a 
“distributed operation” that uses “distributed agreements” 
to obtain the consistency information at the same GSN and 
enable direct comparison of the resulting data.

Summary
The above comparison shows the difference between 
Cirata’s enterprise-ready Gerrit MultiSite product and the 
open-source Gerrit open source parallel effort.

Key benefits of the Cirata MultiSite product:

• No single point of failure.

• Full primary-primary hardened WAN implementation.

• Easy to configure either Symmetric or 
Selective replication.

• Git LFS “globally local” implementation.

• Git MultiSite administration capabilities.

• Greatly reduced deployment complexity.



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 10   I   © 2024 Cirata Inc.   I   All rights reserved

Glossary
Acceptor

This is a Paxos term that identifies a node that can vote on 
a proposal.

Consistency checking

In a distributed service, Consistency Checking validates that 
a “replicated object” is consistent at all sites. In Git MultiSite 
Git repositories can be checked for consistency.

DConE

Cirata’s patented implementation of Paxos.

Eventual consistency

In its original form, this was used to describe algorithms that 
will resolve issues between distributed database entries 
over time. In this case “consistency” can trigger database 
entry removals and therefore other downstream effects. 
A simple example is a dynamic multiple-site order entry 
system that is supposed to know how many items it can sell. 
If the system sells too many copies then it can trigger some 
shopping carts to be emptied of the items or, after the 
item is purchased put it on backorder or cancel the order. 
For more information, see the Wikipedia article here.

The Gerrit multi-site architecture documentation uses 
eventual consistency with a different definition. Instead, 
what they appear to mean is, over time, any missing data 
from a Git repository “replica” will be filled in from another 
“replica” via either a pull or push event. Clearly, “losing” Git 
information is not what they are talking about so we will 
not be using the terms “eventually consistent” or “eventual 
consistency” here. See “Replica Family” below for a 
better understanding.

FQDN

A Fully Qualified Domain Name is a human-readable name 
that must be resolved by the Domain Name Service (DNS) 
to obtain the network address for a server or service.

Global Sequence

The “Global Sequence” is a series of integers. Each 
integer, called a GSN, represents an idempotent update 
to a distributed object maintained by a single DSM. In Git 
MultiSite each repository has its own DSM and therefore its 
own Global Sequence.

GSN or Global Sequence Number

See “Global Sequence” above.

Idempotence / Idempotent

A property of an operation such that performing the 
operation multiple times in a row will yield the same result as 
if it had been executed only once. This includes not only the 
state of the system that the operation is acting upon but 
also any and all returned values.

Learner

This is a Paxos term that identifies any node that wants to 
learn the outcome of an Agreement step.

Membership

A term that is used to describe sets of nodes that are 
connected to each other as part of a replication group (or 
other DSM)

Multiple primary

In a distributed application this means that each instance 
of the application can request changes to the underlying 
data. The details and characteristics of the replication of 
those changes depend on the implementation mechanism. 
Multiple primary is the gold standard.

Paxos

A family of protocols for obtaining consensus between 
service entities in a distributed network.

Proposer

This is a Paxos term that identifies a node which can 
propose changes. As well as proposing changes the 
proposer is also involved in conflict resolution as part of 
the voting process. Resolution comes from interactions 
between proposers and acceptors and the losers are 
expected to re-propose.

Replica

A repository instance that is maintained by Git MultiSite to 
be “single copy identical” with the other instances of the 
same repository when their GSN’s are identical.

Replica family

The complete set of repository instances that are 
maintained by Git MultiSite via a single DSM to be “single 
copy identical” when their GSN’s are identical.



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 11   I   © 2024 Cirata Inc.   I   All rights reserved

Selective replication

Different repository families are resident on different 
subsets of the total set of servers. Compare with Symmetric 
replication below.

Single service presence

A single service FQDN that can be used to access a service 
regardless of where the actual servers for that service is 
located. Instead of the FQDN representing a specific server, 
it represents a service and the resolution of the FQDN will 
select one among the servers providing that service for 
the client to connect to. Ideally the server selected is the 
smallest latency from the client that is “up” at the time of 
the request.

Symmetric replication

All repositories are replicated to all servers. Compare with 
Selective Replication above.



Distributed Gerrit Code Review: A comparison   I   www.cirata.com 12   I   © 2024 Cirata Inc.   I   All rights reserved

About Cirata
Leveraging our patented technologies, including the 
Distributed Coordination Engine (“DConE®”), and trusted 
by global brands and industry leaders for more than 15 
years, our DevOps solutions integrate effortlessly with 
your existing source code management to increase 
security, minimize risk, reduce latency, and improve 
collaboration across globally distributed development 
teams. In addition, Cirata specializes in the migration 
of Hadoop data lakes into leading cloud platforms to 
enable game-changing Artificial Intelligence (“AI”) and 
analytics. With Cirata, data leaders can leverage the 
power of AI and analytics across their entire enterprise 
data estate to freely choose analytics technologies, 
avoid vendor, platform, or cloud lock-in while making AI 
and analytics faster, cheaper, and more flexible. Cirata’s 
portfolio of products and technology solutions make 
strategic adoption of modern data analytics efficient, 
automated, and risk-free. 

For more information on Cirata, visit www.cirata.com. 


